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FOREWORD

The work CO-IvL red by this repolt was done the System Dynamics Branch,
.Avronautical Research Laboratory, under Pr-.,n-z-t 7060, "Flight Dynamics
Research and Analysis Facility". Mr. Paul. W• Nosker is Project Engineer.
"This study Is part of a continuing program to t-:ermi.ne optimum methods of
simulation 2tnd analysis of the dynamics of ai-r- weapon systems. The general
subject of quaternions as applied to coordinara conversions has been under
investigation for approximately two years, thcz•uzh the bulk of the work reported
hcre was accomplished during the lastsix mrnmins of 1957.

The author wishes to express his appreciarzion to Mr. Robert T. Harnett and
others of the Analog Computation Branch of Lit,- -Aeronautical Research Laboratory
for assistance in the analog simulation portinre n~f the study.
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A lAST RA CT

The theory of the four-parameter mnethod is dev,-loped with specific
application to coordinate conversion in aircraft simulatioris. This method

is compared with the direction cosine method both io a theoretical error
analysis and in an example simulation on an analog computer. It is shown

that the quaternion method is no more sensitive to multiplier errors than

is the direction cosine method, and it requires nearly 30 per cent less
computing equipment, In addition, the multiplier bandpass re;aoirernent

in the four-parameter method is onlyl half as severe as for direction cosines.

By every important criterion, the quaternion method is no worse than, and

in most cases, better than the direction cosine method.
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SECTION I

INTRODUCTION

The problem of motion of a rigid body and the associated one of coordinate

copversion are very old ones in the field of classical dynamics. Significant

results, dating from the time of Euler (1776) thrcugh the introduction and

appltcation of matrix methods by Cayley and Klein and others in the last half

of the nineteenth century, brought the matter to such a satisfactory state that

no significantly new methods or approaches have been found necessary. The

developmnent of modern computing machinery makes necessary a re-ezarnination

of the -iaricus methods from the standpoint of their utiiity in computational

devices, it is not necessarily true that methods which have proven their con-

venience in the largely ar,.lytical manipulations of classical mechanics should

prove to be best adapted .or nuraiezical or a ialog computation. Quaternions fell

into disuse among physicists about the turn of the present centur': because matrix

and vec'tor methods had proved more useful in the types of investigations then

b.-;ing conducted. The purpore of the present paper is to show that the quaternion

anproa:.h to coordinate transformation does sffer real advantages in ýhe anaiog

simulation of rigid body motion. In recent times Deschamps and Sudduth* have

sugge.;ted an applialli 'oCL , Uital co..i.pdLtation, and Eackus** has proposed them

for analog sim'ulation, but in general quaternions are little known among t.hose

engaged in si.mulation of aircraft motions,

The coordinate conversion problemn in aircraft and missile simulation is

different at least in emphasis from that of classical dynamnics., It might be well

to state the problem which is of interest and to which the methods explained later

will be applied. A missile or aircraft znay be considered as a moving coordinate

system, Various vectors must be transformed into this coordinate system or out

*Deschazxips, G. A. and IV. B. Sudduth, Federal Telvcommunications Laboratories,

Nutley, New Jersey. Case ?6-10707, November 1955. . -

44 .•lg*ijackus, Ce-orge, Rigid Body Equations - Euler Parameteris, Technical Note 6,

Advisory Board on Simulation, University of Chicago, November 1951.

Manus,.ript released by author 15 January 1958 for publication as a WADC Technical
Report.
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of it into some inertial system. Integrating the equations of motion of the air-

frame can be made to yield the three components of the coordinate system's

angular velocity vector. From the X, Y and Z components (P. Q, R) of this

vector in the moving system, it is desired to keep track of the orirutation of

the coordinate system in sach a way that vectors may be transformed in either

direction. This means an integration of angular rate to dete-arrne angular

position.

Fundamental to this procedure is a consideration of how the orientation of

the coordinate system is to be specified. During the history of the subject,

varixus methods of doing this have been put forward. AlL the most useful onles

fail into three categories: Euler angles, quaternions, and direction cosines.

Of these, the first and last are probably the most familiar to modern readers.

In the Euler angle method, the orientation is expressed as the result of three

rotations about each of ti-ree axes, the rotations being made in a specific

sequence. The physical interpretation of a ouateainion is a rotation through sorne

arigle about some specific fixed axis. The nine direction cosines are simply the

cosiai.cs of the angles between each of the axes in the moving system with each

of the axes of the fixed system. Principal attention here will be given to the

quaternion, or four-parameter system. It was first introduced by Euler in 1776,

ý a- rvCsult of spherical trigonometry consideaations. The elegant quaternion

form•ulation was invented by Ilamilton in 1843 as a new kind of algebraic ftnmal-

isan. A natrix formulation was devised by Klein for use in gyroscopic pioblems

an-d, in this formulation, is usually known as the Cavicy-Klein parameters. Each

c? the2se three different approaches to the foocr-param-ter system has its own

advantages. It has been decided to present at least an outline of all three here.

There are two reasons ior this: first, there are somne propositionbs wh;ch are more

easily shown by ono development; secnnd, it seems probable that when the reader

is offercd a %hoice oi method, he will reach zan understanding sooner if he cýis

select .he method most nearly consonant with his own backgxound.

It will become apparent that this subject presents something of an expositional

Ci problem. In order to reach the desired ends, it has been deciemd to assume that

the reader has a knowledge of matrix methods, especially as applied t,.o coordinate

conversion in three-dinicusional space. As a compromise, a brief introduction

to thu subject is given in Appendix A, though a more satisfactory trea!.ment ia

given by Goldstein*. In this i eport the term "quatern.on" has been us;ed tz

[I

: *..lteii, lHerbert, Classical Mechanics Addison-Wesley Press, C:air.bridge,

.Mass., 1950.
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represcint the fo-r-parameter method in general. In other cases, it is necessary

to use the word to distinguish Hansyiltoji's development from the others. It is hoped

that conftusion may be kept to a min~nuin.

There arc ma3ny different tcchn.ques used in present-day aircraft simulations to

solve the coordinate conversion prob.em. I he technique is usually adapted to the

spfecial requirements of the problem at hand. Ii most of the rotation takes place

Lbout one axis, or if only the gravity vrector is to be handled, or i-f the airframe's

rotation is otherwise restricted, valuable sirmplifications may be effected in the

analog equipment required to represent the conversion. It is not the present

purpose, howvever, to investigate all these possibilities. Consideration will be

given only to the. moss general and unrestricted case: that of several complete

revolutions about any cr all axes. This immediately excludes the Euler angles

because of the singular point. The advantages of Euler angles are such, and their

popularity is so pervasive, however. as to warrant keeping them in mind. Accordingly,

Appendix B gives a brief outline of the Euler Angle system most commonly used in

aircraft work, and at appropriate points, comparisons will be made of them with

quaternions and direction cosines. In making such comparisons, that form of Euler

angle instrumentation whose capabilities most nearly equal those of the quaternion

scheme will be asýurned. This form has been discussed at some length by liowe*

and his figures and results wi". be used for comparison, in Howe. s method, the

extent ant. direction of rotation is unrescricted except for the inevitable singular

orientation, and he shows that even this leads to less practical difficulties than one

inight expect.

It is valuable to keep the Euile2r angles in mind, but the quaternion method must

really st.r~d or fall on Lts cromparlson with direction cosines. It has in common

with direction cosines the cal ability of handling completely unrestricted rotations.

Accordingly, considerable attcz.tiin h-las been devoted to the direction cosine method

in L-is report. Both a theoretical error amalysis and a simulation program were done

for the cosines in order tc provide the most complete possible basis of compnriso1n,

They have been done before, bLt it is difficult to compare results obtained by

dilferent investigators on dIfft ent computing equipment. An attempt waE made here

to keep the coiditions as nearly comparable as possible. Of all the material con-

tained herein, no or'ginality is claimned exrept for rhe quaternion error analysis

and simulation. Even here, no ne'.v techniques were used, with the possible
except.ion of the method of handling multiplier errors. It wzs felt necessary,

however, to include the remaining material in order to introduce and place in

context this probably unfamiliar subject.

*JThwe, R. M. and E. G. Gilbecn, A New Resolving Method for Analog Computers,
WADC Technical Note 55-467, YJ-uary 1956.
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SECTION 11

"TH1rE EULER PARAMETERS

The earliest formulation of the four-parameter system was given by Euler

1 776, thuugh the oldest treatment generally available today is probably that

of Whittaker*. It is an essentially geometrical dcveloprrment, but will not be

presented cas such here. The principal results may be denmonstrated with much
1 ess labor by use of matrices.

Central to the development of these parameters, and indeed to the four-

pararietet methods in general, is the proposition known as Euler's theorem,

which may be stated as follovw s: any real rotation may be expressed as a

rotation through some angle, about sonic fixed axis. In other words, regard-

less of what the rotation history of a body is, once it reaches some orientation,

that orientation n.,y be specified in terms of a rotation through some angle (which

can be determined) Libout some fixed axis.

The truth of this proposition is net intuitively obvious, but in any case, it must

be shown. Consider a transformation matrix (A). No restrictions are u.ut on (A)

other than those which exist for all orthogonal transformation matrices (see

Appendix A). Another way of stating Euler's theorem is to say that for every

matrix (A) there exists some vector R whose components are the sanme before

ant,'ifte•r application of (A); in other words, there must be rome _R sach th-at"

(A)ik = R.(1)

for any (A). If the components of P. are designated X, Y and Z, the oleyoents

of (A) by a-n, then Equation (1) nay be written

•":a 1 & Z a?., Y uZ)
a1  2z a 3

Sa31 3Z 3

If this matrix equation is expanded in components, a set of linear homogenous

r *Whit.,,i: r, 15. 1. Analytical Dynamics, Fourth Edition, Dover Publications3

N. Y., 1)44.
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'.quatiorts results:

(a 1 1 - I)X + altY + a.! 3 Z 0,

a 2 1 X + (a - 1)Y + a 4 3 Z = o, (3)

a 3 1 X f a3 2 Y + (a 3 3 - 1)Z = 0.

A necessary and sufficient condition for existence of a ron-trivial solution is

that the determinant of coefficients be zero. Tiereforc, it is necessary to show

that

a 1 1  -a1 1 2  a 1 3

a 2 1  aaz - 1 a 2 3  - . (4)

a 3 1  a 3 2  a331

This may easily be done making use of the properties of arn orthigonal trana-

io:.nation matrix developed in Appendix A. If the above equation is expanded,

(a1a'Ra 3 3+al2a2 3 '31 2132 1 3 -a 3 1 a 1 3 a, 2 -a21 a12a33 a3a2

+(a 1 1 -a 2za 3 34+a 2 3 a3 I)+(a2 -aa31 3 +'13'3 1)('33-a '2Z21 li 2, )= 0 (5)

'rh,ý first term vanishes in consequence of the fact that the deterrfn.r4nt of the

transformation matrix must equal unity (Equation (1356) ), arid tic last Lhrue terms

vanish from the orthogonality conditior.s of Equationi (16Z). Thus, it is oroved

that Equation (%4) i-s an identity For any orthogonal (A) and that ther. existr some-

vector R which is unchanged by the transformation. This proves Euler's theorem, r
(dSince it has been shown that it is possible to express any rotation as a single

rotation albout some axis, it is possible to make use of the equivalent rotation to

specify orientation. Consider two coordinate systems X Y Z and X' Y' Th.

XYZ system is assumed to be fixed in inertial space, and X'KY'Z' is moving in,

some arbitrary manner, though both coordinate systems have the same oligin.

Assume that initially the two systems are coincident. Thern the X'Y'Z' system

is zotated through an angle F' about an axis which makes angles n, Y, y with the;

WADC TR 58-17
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A

\,•I 'z /. s. respectivc!x . It l ill be noted that this itxis of rotation nLialcs the
s• ic .oghcs ,o, [3, '•" .vith the \', Y', Z' axes \l5so. It is 1low necessary to expr,_s:

t I. i .ns-.fori'xtion Matrix in terms of the quantities p, a, '3 and -y.

I:u, r.,r to do this *use is made of in addititonal coordinate syste°rn, X r Z" • ~r r r

%01.h,-i.; l7ix ed in the XYZ sy.stem. he Xr axis lies along the axis of rotation,

1C the Y raxis is restricted to the XY plaine. This would give rise to difficultyr

i' thte 7 axis is the axis of rotation, but in that case, the Y r-axis could be confinedr

to the XZ pl.-me or the YZ plane, and the final result would be unaltered. At any

r-.:e, with the choice indicated, the Yr axis is always pec-pendicular to the Z axib,.

Now the rotation through the angle j± is a rotation through 4. about the Xr axis, so

the rt ,,iton is a very simple one in the X Y Z system. Accordingly, the rotrtin
r r r

o 'lhe .' Y'Z' system th-ough the angle p. may be viewed as the result of three
rotarions: (1) rotation of the X'Y'Z' system into coincidence with the X rY rZ

rr r

systev; (2) rotation through the angle ý± abc' . the X axis; (3) the reverse of
t_1 r

(1) to restore the original separation of the X'Y'Z' and X Y 7Z systems. The

n iatrix fur cacd. of these transformations will be developed, and then the three

-izay be mnultiplied together to express the total tiansformation.

-irsL, the transformation into the X Yr Zr system will be considered, a, ,

,1:,d y are the ang!les hetw.een thec ne.' X a"is anrd the fixed X, Y and Z axes.
Ti'us, it is seen: from Equation (125) that all a and a13 are immediately fixed.

One other cosine may be established. Recall that ihe Y axis is perpendicular to

• .Z axis. PIhis mneans that a 2 3 = 0. Thus the matrix of the first rotation is

Cos a Cos Cos '
(A) = (6) a 2 0 .

S31a 3  a 3a /

Applying the orthogonality conditions, it is possible to, deduce t:.at the other

leirients are

cosC Cos3 cos ,Y

(A) 7 Cos fi Cscy Cos a CsC 0 (7)

T c0!30. •cot ' Tcos P cot y :c sin 0

The amhbigiit.,"s 'n sign mnay be resolved by making use of the requirement that

l f.-itrix zovc must reduce to the identity matrix when a becomes zero.

A1'ADO T . 3-17 6



The result is
cos a COB . cos

(A) -Cos P csc Y cos a csc ,Y 0, (8)

-cos a .cot Y -cos P cot sin y

The second rotation, through the angle p, about the X rax-is is simply<'0 O0
(R) 0 cos I sinp . (9)

0 -sin IL Cos Ft "

The last of the three rotations is the inverse of (A) or (A) . Thus, the general

transformation is phe result of all three, called (B). It is given by

(B) = (A)-'(R)(A). (10)

This is a similarity transformation, and, among other things, the spur (sum of

the diagonal elements) of a matrix is invariant under a.similarity transforrnation,

1. .,C.. ..

., : b• + bz + b• 1= +l 2 Cos i.. . ;• i
b1 1 +bz 3 3  + os,()

so the angle'of rotation may be obtained directly from the diagonal elements of

the transformation matrix. Carrying out the operations of Equation (10) gives

1sin - osin 2 a 2 insinnCos CosZ Z(cos a-cos y sin

"s -Ci-o-OSn• -S Cos Y) -sin -cos- c

• (osn cos a cos 1-2 sin sin- 2 (si- Con Cs Y

.... -siny cos-Ieos) -sinEccos L cos a)

._(cos ct os Ysin2 ~~ 2(sn c cos y I-Z ~si Siny

+.Si 'Cs -CSP -I Cos- Cos a

If tlge following substitutions -are made,: .:.

:cos &asin- 71 ='cos sin C :cos y sin X =co -s . (13)

WADC TR 8-.177



ma, ,~ trix of 02.) 1"" m ,,,

•':X -t -' l×Z(, + ;. X) n(• -'X)
e=+ Y(n-.x - +, -• + X2(,1 + 4 X) (14l)

U~~ ~ Z~. 2 2x (i( x
n .ix) Z(,• -x) +2 t +• J

These four quantities are called the Euler parameters. It may be seen from

their definition.si that they obey the relationship

2 z 2 2+q + z+ x=, (15)

so they are not all independent. Also, none may lie outside the range *1.

If the quantities ý&, a, P, and V are known, it is a simple matter to compute

the Euler parameters and/or the transformation matrix by the method given above.

If, on the other hand, the transformation matrix is given, it is also possible to

solve for the four par.meters, though difficulties arise. A consideŽration of these

dLficulties will shed further light on the nature of the Euler parameters. To begin

with. it should be stated that the quantities I, a, A, and y cannot be uniquely

determined from the transformation matrix. The reason for this is that even though

rotation through a certain angle, about a certain axis will produce a definite unam-

biguous orientation, the reverse is not true. If the orientation is given, there are

four separate ways in which it could have been obtained by rotation about a fixed

axis. Possibly a- example will help to clarify this. Assume that the rotation being

considered is a rotation through an angle of + 30 about the + X axis. There are

three other ways to get to the same position: (I) a rotation through - 300 about the

- X axis; (2) a rotation through - 330° about the + X axis; (3) a rotation through

+ 3300 about the - X axis. A further ilUustrattorwof the possibilities is given in

the table following.

x '1, r

Case I + coo~ + Cos CL -in.~ + coo * in ~ + coo y sin~
Case Z + coso (-+cos a)(- sin•) ' ( si• (-cos y)(.- sin.)

Case 3 Cos~ +Coo a(L -sin.~ + coo (sin) + cosy(sin)
Case 4 -Cos~. ( cos a) sinf P-cs~ in -csy 1 )i~

The first two cases lead to the same Euler parameters, and the last two lead to

a different set which are the negative of the first. All four Vets lead to the same

transformation matrix.

WADC: TR 58-17



The relationship between Euler parameters and direction cosines may

be derived by equating terms in Equation .14). The result is

"4X = i + aI + aZ 2 - a 33,

4g 1 + a a

4x =1-a 1 1 +a 2 2 +a 3 3 '

4 2 l-a -azz -+ a(1

These equations deter~n-ine "-he Euler parameters except !or sign. The sign must

be gotten in ane-ther way. From comparison of terms in the matrix it is possible

to show zhat

a 1 a 3 3 ,T~

a31 -a. Xq

12

Z3 2=

Thus, if X is assumed to be alw a ys positive, the signs of the ethers mnay be
deduced from nEquations (17) unless P m0. This ex the special caTe of a 180m

rozatuon. Tcra is an additi.oi,,m.1 •JUhU liv huc 1vvLiuu• the 6~irectior of. the
abes of rotation and the direction co a the rottion are cterm pletely unrelated,

Eizlher a positive or a negative rotation about either the positive or negative
t,%,ill gve the saoe result. Yor this special case, anotheih aneans would

have to be devised for dcpsLnitg tht signs, but it hardly seems worthwhile to go

ihvto it herv. It is nft expected that this will lead to any practical wifficultios,

WAIDC TIR 58-17 9
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SECTJON III

"T I E C.AYfLEY -KLEIN PAIRAMETERS

In this development of the four-parameter system, it is found that a

2x2 connpltx initrix mnay b't used to represent a real rotation, rather than a

3>3 real nmatrix, Consider such a matrix (H) 0  i
I

Ih I hlz

(H) = (18)
h21 h22 1

"ifhe i-equtreinent is placed on this matrix that it be unitary, that is to say the

prcduct of (11) and its adjoint must yield the unit matrix. The adjoint is the

complex conjugate of the transposed matrix. In addition, it is required that

the determinant of the xnaL-ix (It) have the value +1. The unitary condition

allows t1 for the determinant, so this is an additional requirement. The

unitary condition may be written as

(xu: hx:) C1 t is = 1 • (19) 1

1hl2 h 2 * h Zl h z 0 1

Lxp:d~iJg and equating components gives

hlI *hII + h b *h = 1,

hI 1 *h 1 2 + h 2 1 *h 2 2  0,

hb1 2 *b•1 1 + h 2 2 *1>- =0,

h *h +b, 2 *h2  =1.

"The sfecond and third equations are the saine, being mnerely comnplex conjugates

of each othir. The first and fourth equations have no-imaginary con-onent,

\vhireas the second (or third) has both real and imaginary part--;. Therefure, the

three independent equations contain four conditions. These, together with the deter-

sninant requirement that h 1 hII - h 2.1 h z = +1 make it possible to determine certain

relation•ships an-iong the four quaiitities h1n. It may be shown that hI = hI*

and hil - h s . o 1he i:1tlx. may be written as

WAY,; TR '8-17 10
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I hI hlz%1(H) = ( 1  1 (21)

I.h 1 2 * h 1 1 *

The quantities h III h 1 2 , h 2 2 are usually referred to as the Cayley-Kiein

parameters. It will be noted that they are complex numbers. While it is

convenient to use them as such analytical operations (and this is the

purpose for which Klein develcFed then:) a physical computer must treat

t-omplex nurnibers in terms of their real and imaginary parts. Therefore,

it is convenient to introduce fou- other quantities defined as follows:

*h I =e I + ie 2 ,

2+ iee 4  (z)

where the e's are all real numbers, and i is tne square root of -1. Using

th.se definitions, the matrix (H) may be written-j as

e +ie + ie

(H) I (Z3)
te3 +ie4 eI - iej

Now consider another complex matrix (P), which has the form

z x-iy
(P) (Z4)

X+-z ) z

where x, y and z are real numbers. It will be noted that the matrix (1') is

equal to its own adjoint, and thus is said to bc self-adjoint or Hermitian. Now

consideir a transformation of (P) of the form

(F)' = (H)(P)(-H)+ (as)

where (1)+ designates the adjoint of (Hy. Since (IH) is unitary. (H)"- =(H)-

f so equation (Z5) is

(M)' = (26)

This is a similarity transformation. It ia shown in Appendix A that the deter-

,rinant of a matrix is invariant under a similaxiiy tra.,formation. It can also

be shown that the Hermitian property and the spur are both invariant under a

VWA LO3 TR 58-1? 1-
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Ssi-,ilaxity trahsformation. Therefore, the transformed natlix (P)' must

Shrvc the lorm
J X' - ly'

ft I *
S( )-= .( T

* t iy' -Z

4 The fact that the determinant of (P) must equ;,± the determinant of (2)' gives

|x +y + z =x +y +z' Z (28)

If x, y and k; are viewed as components of a vector, then Equation (28) is the

requirement that the length of the vector remnain unch*,iged. ZEpiation (26) May,

be: written

M -ey -3 Cy et + z e-ie - ie

3) 1 1
if the operaiati ic (29) a:Ie carried out, it is found that

!a

!~ z _e 2 ,Sx• ( e z e3 + C 4-)x _ 2ýC-Ie ez + C 3e 4)y •-2('e,'4 e, '3)

y C = + 2 -( e e 4 -Jy + 2(e e(30)
, 4 1 2 e4Z

', (e e 3 + e(I 4 ) x + z(eC,% C ee.)y + (e' + e 2 2
3~~0 -40 1 a 3 - 4 ]z

lhu.e equations represent a linear transfurnmation between Jte components of x. y

1 and z, and the components of x' Y' and z'. The matrix for this transformation

e 2 e2e2 3Ie2 e4 2(e4e4-e)e4 )

L) CC +e4  '31)'' 24 3
( ' 2e.- e 110 2 2 2e,, )

* 4e1 1 - 2 '[3 4 ¶ 2 3 Tt 4 t 1  .~
S""

2 2 Z )
Z(e1 e 3 4-e2 14 ) 2(e 3 -e, C) e ze Ve3 4

It may be shown directly that this matrix satisfies toe orthogonality conditions,

but it is proved :ls,, irom Equation (28). Equation (31) shows, that the nine

.ir'c cines ay be exprested in terrni of the four e.-; If Equations (Z )
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r.0 ,ailutt td tnto E-quaut)nb (-MO) it is fouud that

e 1 + %3 +4 (04

and therelore, only three et the a'# *r* !.Adqpendent. The identity of theec

four quan~itifta with the Euder paramgeters is obvious. Comparicon of EquAtions

(31) and (14) gives

aL X• z={. '.3 =. 4 4 , (33)

An equivajence has been indicated bewqen the prs! (3x3 ) matrix (A) and dhe

comlplex (2.4Z) mnat'ix 0j). it may be shown that this correspondence goes

further. Consider the real transforuatit-n

. , . . ... (34)

aci let the aesociated unitary complex matrix be tH)It ao that

(P), (H(R)(H)r (3r,)

Now consider a secorid transform~ation (A) with associated (H) 2 .

',, ý (A)-',

(P), = (H)z(P),(H)" , (36)

Sabstituting (34) and (35) into (36) gives

Therefore, if (A)(B) ,rC) and (H)z(H), =(H)3, the above eKutions become

'Ing .h-t multiplication of two rea 3-z
3 W atricee correspWU4s to mr-ltip•icatron

of the twu associated Zxz complez matr'ices ir the a,•-ne order. Two types of quan-

titios which cor:espond in this Manner are E4id to bts isryorplhtic.
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It s also0 possible to view this prVc#o o! two *tccesosve rotatitun in termcn
of th e e'a the..gc ~ve. Consider one rotation deftned by of. e1, e 3 and e4 .
After this, another rotation is pertornmed wLich im desecribed by Is', *'" t'3
and a4'. There it solins set of ens cka4 elled e2', e3,1". u.4" wl-Ach describes
the final ortnz,tation after the two rutifons. TiLd conhlnc-d sot may b, found by
multiplying the (H) n'atrices of the two rotatioas in the co:,ract sequence, The

equation i&

/ ~~ ~ " .1. (39) ~ie 3 + 5

(a) 31 (e Q'ih01.iez" 3 4e" )14 11-1 ý1i I

Expanding this eqtvation and equtttinj companente gives

till" t t 'e - - 3' @ 3 - 44 "4

7" 1 e%, ' 4z el 'Sj ÷ e 'I + 0 3 'ti %4 t3

03" O'e3 - 02"04 t"3'el +÷3 44 0Z (40)

C 4 " t jZe 3  + *1 It4 4- j4'e l .. I3 1ez

13y usue of these equLations. succeshive transformations may be handled in terms of
the e's Eirectly-

This technique may be used to determnina the relationship between the eta and
the Euler angles given in Appcndin B. The (1) matrix corresponding to each of
the Euler angle rotations may be. detor.nined, and the three may be multiplied in

the correct order to synthesize the complete transformation. Consider first the
(t-t) matrix correspv'ndir-g a.'to t raf i crr..- - -- gien 3! 'C' in A.pdir R.
F, am Equation (179) it is seen that the transformation equations ar•e

y' =. -A sin 4 + y cea4 (41)

£3quating coefficients of these equatiOv.a with like coOefikcirtS in Equatil (0)

gives the nlne relations

WADC TR 58-17 14



= 2C _e3 - sin 2 = (e 3 e 1 -Cel)1 0 Z(el e 3 4c 2 e 4 ),

sin , = Z(e e 4e 3 3 e4). Cos C - 1 e 2 3+e 4 Ze 43 l (4z)

-. 2(eC 4 -e ee+2 0 = 2(eCe3 +Ce), C C I 2 2e3 4

These equatiuns cannot all be satisfied unles;s e = e4 C 0. if this is true, then
2 2 3 42

cos t'.= eC - S2 , Sin z 2ceC , e e (43)

Solving these equations for e1 and e. gives

eC cos e sin', (44)

so the (H4) rr.atrix corresponding to the 'b rotation is

COS + in t 0e

(H)r (o +i (45)i si'iL
0 COS5-7 01-

By an exactly similar process, it may bu shown that the other two mnatrices are

sinjCs\ si

-sin Cos isin 4  cos (4-

Therefore, the entire transformnation, which is the result of all three rotations,

is

(1H) = : = (H)ý (H)e (H), (47)
-3. 4 i -iZ

Carryixg out the indiicated a,"l ,.l-,Qg and enuating components gives

de cos cos - Cos + sin sin sin
2 2' z

e 2 =sinz cos- COSz - COS osl-- s5n 2

e cos sin 2 cos + sill COs - sin (48)
3 2 2 2 z

CoB c os sin• - sinl sin- cos?'

WADC TR 58-17 15

C. .. ... ... _____ 0



SECTION IV

QUAT ERNIONS

The most brilliant formulation of the four-parameter method was made by

Hamilton in 1843. He developed a new type of entity called a "quaternion". It

is composed of four parts,

q = S + ia + jb + kc, (49)

where S, a, b and c are real numbers, and the indices i, j and k are defined

by the following rules;

.Z1 = - I, ij - -ji =k,
2j =-, jk =-kj =i, (50)

k= -1, ki =ik =j.

The conjugate of the q aternion q is

q;, = S - ia - jb - kc. (51)

Using the laws for the indices quted above, it may be easily shown that

2 2 .2,Zqq* = q*q = S + a + c ,(5)

which is called the length or norm of the quaternion. If this norm is unity, then

a special form of quaternion results, a versor. It is possible to make use of

.hese to de2scribe a coordinate transformation. The quantity S is called the real

Dr scz.lar part of the quaternion, and ia 4- jb + kc is called the imaginary or

vector part. Now assume we have a quaternion whose scalar part is zero. We

call this a vector of components X, Y and Z,

V = iX + jY + kZ. (53)

Let us examine the operation

q*Vq = V' (54)

where q is a versor. So far there is no particular reason to expect th- t V'

w,,ill be a vector, but this turns out to be the case. Equation f'4) may be written

(S - ia - jb - kc) (iX +jY +kZ) (S + ia +-jb +kc) = V'. (55)--

\,.•.?- 0-7-quition is exranded Mraking use of the rules for indices, the result is

V1 -c] + Y [Zcs + Zab] + Z [Zac - Zsb] }

+ Y[S -a.-b C] Z[a+c} (56
{ xf?: :-1 + Y[Zbc - Zsa] + Z[s2 - a- b2 + C] }.

16-



ilThis is simply a coordinate transforinat-.)n wl.i, nra::.furxnatjOn matrice is

S .a - c. 2(cs i ab) Z2(ac - sb)
(a )s2 -a2 2 . C 2as + cb) €7

2(ab-+cs) s - bZ - c (5)

2(ac + sh:) 2(bc -sa) b

The correlations with mnatrices derived in the two preceding sections are

evidently

e1 = Y -- s. = r -c %: =b = C , (s
ejxs, ez=c ey3 b, C 4 ~a (58)

The matter of two successive rotations miay be handled quite easily. Assume

that first we transform a vector with the versor q,.

ql*Vql V'. (59)

Next we apply the versor %,

V" = q2 *V'qz = qZ*q 1 *Vqlq 2 . (60)

1VeiiU J:,,ýi•c a nevw vect qiq, : q 3, and wish to find the relationship between

q3 and q2 *ql*. We define q4 = qz*ql*. It may be seen that

42 *q2*ql* = q2q4, (61)

a~.d since q 2 is a versor, qzq 2 * = 1. Therefore, Equation (61) reduces to

qj* qZq4" (62)

Now we apply q, on the left,

qlql* 4  qlqg94 = 1 = q3 q4 , (63)

Sso that q m ust equal the conjugate of q 3 " This means that

V" q 3 *Vq 3 . (64)

Now observe that the eqi ation q3 = qlq, may be written

S 3 - ia 3 _jb 3  kc 3  ',SI + iaI + jbI + kcI) (SZ 4 ia 2 . jbz + kcz). (65)

WADC TR 58-17 17

m a m na



Expanding this equation and equating components gives

93 -- S2S - a1a2 - bIbz - c I cz

a 3 = SIa 2 + S2 a1 + bIC? - c 1 bz

(66)b 3 =Slb - alcz + b1 S2 + cla

c 3 = SIc 2 + a1b2 - bIa 2 + clS-

These equations are identical with Equations (40) which were developed in the

same connection by use of the Cayley-Klein parameters. Thus, the quaternion

method leads to the same result as the preceeding developments.

I-

.G r: 18



"SE"CTION V

INFINITESMAL TRANSFORMATIONS AND RATE- OF ROTAFION

The preceding sections have dealt with the four-paralr;2ter nt.t0hod Of

specifying the orientation of a coordinate s~fstein. As wa stated in Suction 1,

however, the primary interest is in determining the orientat0on from the rate

of rotation through a process of integration. Accordingly, it is necessary to

relate the rates of change of the four parameters to the rates o0 rotation of

the axis system.

It was shewn in Section III that an orthogonal transformation may be

represented by a complex matrix having certain properties. It is now of

interest to investigate this matrix when an infinitesrnal rotation is performed.

Let us assume that this infinitesmal rotation consists of a rotation through the

angle 4.1 about a line which makes angles ot a, fP and y with the X, Y and

Z axes respectively. Recall that the matrix (H) may be expressed

e a + ie e 3 + ie4, ,30=) .(67)

.. c3 + ie 4 C - ie z

" I Applying the geometrical interpretation of the e's gives

ao-`L+i Cos Ysintý-csPsnL o i

Co Psin --L+i Cos asin- LL Cos t mE - iCos - sinl2(3
((: 4-- sn (6 )

From this, it is possible to see that the infinitesmal rotation may be represented

by i eso

I' +o C + : cos Q o i P- i -A-' Co(H)cos / (69)

I ~ since Cos r2 2 ~~

It is expected that any matrix repre'.enting an infinitesnial rotation will differ

only slightly from the identity matrix. This is true of the above matrix, and
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'nis r--av be shown mnore clearly by writing it as follows:

1 0Si cos - osP+i Cos a

( ( : +(= (I) - (C (70)
0 1 -Cos P3 + i Cos a -i Cos Y

Now assume that this infinitesmal rotation takes place during a small time interval

At. If (H) is the matrix at the beginning of the interval, and if (H)' is the matrix

at the end of the interval, then the time derivative of (1H) may be written as

d lim (H)' -(H) (71)
dt (H) At

The final matrix (H)' -nay also be viewed as the rcsult of two rotations, first (H)

and then (H), . In other ,ords, (H)' = (H)F (H). Putting this into the above

equation gives

d ( ) = im ( (H) (72)

dt At7-0 At

Since (H) is not affected by the time inccmc.-, the limiting process refers only
(E)

to the quantity -A-,

_r I AU Cos y Cos P +iCos a" (73)
At 2 At -cos +i cos a icos y

th in.-t, the quantity N'tis simply the scalar magnitude of the angular

velocitv vector. If P, Q . and R are the components of 1his velocity vector

.!,.ns the X, Y and Z axes; then evidently-du Cos d =P, g• cos y=R,

cos f = Q, so that

SiR Q + iP
lir (E) 1 -At -- 0 ,-'"A T 2 Q + iP - iR '

fhorefore, froin Equation ('12),

d-t (H) =R Q + -i iR (H). (75)

it Ss .. , pos;:" , a straightforward limiting proces.s,-.that the time

also a matrix whose elements are the time derivatives

t ,20



of the elecnlt. of the original matrix. Therefore,

I + ;e +ie4 iR Q +iP I + ie2 e 3 + ie4"= I (76)
-e ie; e i;? -Q + iP - iR -e3 + ie4 eI -ie2

Expanding and equating like components gives

eI= e 4 P -e 3 Q -eR,

2e 2 =e 3P +e 4Q +e 1 R (77)

2 3 =+ e2P + elQ -e 4 R,

2 e4  + eIP - ezQ + e 3 R.

These are the equations which would be used to compute the four parameters in

an actual simulation. Now if we multiply Equation (76) on the right by the adjoint

of (H) the result is

e + i 2 ; + i; 4 e l -ie 2 - e 3 - ie 4  iR Q -i p \ . 7 8

-e3 +ie4 e1 - ie e3 ie4 e 1 +ie 2 -Q - iP -iR

Again expanding and equating components gives

P = Z (-e 4 ; 1 - e 3 2 + e 2e3 + e1e 4 ),
S= Z (- e3ý1 + ee4 2 + e1* 3  - e 2 4)p (79)

R=Z(-eze1 +ele 2 - e; + e 4 ).

Thus, if the four parameters and their rates of change are known, the angular

velocity may be computed.
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SECTION V1

THEORETICAL ERROR ANALYSES

in the preceeding sections, the fundamentdl theory of the quaternion

method has been pcesented. Before proceeding to an application of the

method, it is of interest to study theoretically the errors to be expected.

Not only w.vill this give a prediction of the results to be obtained in the

simulation, but it will give a better understanding of just how the equations

must be instrumented in order to achieve the maximum accuracy of which

the computer equipment is capable.

As was mentioned earlier, both quaternion and direction cosines will be

sir±-ulated, so errors for both were analyzed on much the same basis. It is

felt that this is an inipurtant part of the demonstration, because without a

theoretical error compari on, any differences found in the simulation would

be subject to the question o computer malfunction. If simulator results and

theoretical error analyses agree with each other, the degree of confidence in

the comparison will be much higher. Theoretical error analysis is but little

used by analog comnputer operators, especizaly i.-i non-linear problems such as

this. It turns out, however, that both quaternions and dir.-ction cosines lend

themnselves readily to an analysis of errors and the results obtained agree with

observations.

A. Direction Cosine Method

The fundamental equations to be used in generating the direction cosine

tr,;sforrnation are given in Appendix A. There are, however, m•any possible

variations which will be discussed briefly. Possibly the most straightforward

way would 1-e to solve the nine simultaneous equations and thus generate all nine

o' ;:ae direction cosines by integration. As the solution progresses, however,
it is inevitjulie Uhit errors will l-c'-"u-"ula'. s,, Ue ofel J ,L±1 1- U ,

si;ch nature as to cause the orthogonality conditions (Equations 130) not to be
satisfied after a time if, indeed, they were satisfied initially. This may be

thought of as a departure of the three axes of the nmoving system from mutual

orthogonality and distortion of the unit It-n-th of these axes. Some of the errors

-ri.::g 'n t-e sol-,:t:ton will r-" ccatj-=bute to this, and these may be thought of as

tnAL,%.i drift , the coordinate system will drift as a whole, and
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